Journal of Organometallic Chemistry, 87 (1975) C4–C6 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

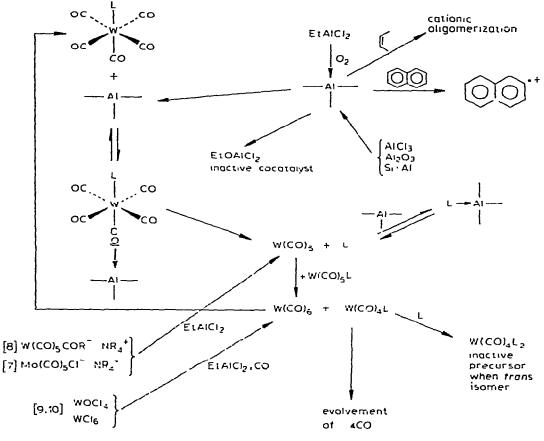
Preliminary communication

A MECHANISM FOR ACTIVATION OF THE PRECURSOR COMPLEX IN THE METATHESIS OF OLEFINS WITH THE CATALYTIC SYSTEM $W(CO)_5 L, C_2 H_5 AlCl_2, O_2$

J.L. BIHOU, J.M. BASSET* and R. MUTIN

Institut de Recherches sur la Catalyse, 39 Bd du 11 novembre 1918, 69626 Villeurbanne (France)

(Received December 30th, 1974)


Summary

In the catalyst mixture $W(CO)_5 L, C_2 H_5 AlCl_2, O_2$ the organoaluminium compound acts as a Lewis acid to promote formation of an active zerovalent tungsten species.

Since the first report on homogeneous metathesis of olefins by Calderon et al. [1] a great variety of precursor complexes associated with many kinds of cocatalysts have been shown to be active in this reaction [2].

We now propose a mechanism (Scheme 1) for the initial steps of activation of a zero valent precursor complex of tungsten of the type $W(CO)_s L$ where L is CO, a phosphine or a phosphite, after confirming some of the intermediates by spectroscopic studies and chemical analysis.

Olefin metathesis is possible with the precursor complexes $W(CO)_5 L$ (L = CO, PPh₃, P-n-Bu₃, P(OPh)₃) when they are associated with C_2H_5 AlCl₂ and molecular oxygen [3]. Each component is necessary for catalytic activity and O₂ has a strong promoting effect; thus after introduction of O₂ into $W(CO)_5 L + C_2H_5$ AlCl₂ + olefin, the thermodynamic equilibrium is reached in a few minutes with *cis*-2-pentene at 25°C whereas in the absence of oxygen, only 5% conversion occurs in about 22 hours. We have established that the effect of O₂ is to increase the Lewis acidity of the alkylaluminium compound [4]: it is an intermediate compound (Al \leq) produced during the oxydation of EtAlCl₂ to Et—OAlCl₂ which is responsible for this enhanced Lewis acidity. Al \leq also catalyses cationic oligomerization of olefins [4], and also with naphthalene gives the corresponding radical cation naphthalene + [4]. In the absence of any base or metal carbonyl capable of acid—base complexation, Al \leq reacts further with O₂ to give C₂H₅--O-AlCl₂ which was found to be inactive as a cocatalyst with W(CO)₅L in olefin metathesis [3]. The presence of O₂ is unnecessary if one uses AlCl₃ as cocatalyst with

SCHEME 1

 $W(CO)_s L$: in this case thermodynamic equilibrium for metathesis of *cis*-2-pentene is reached in 5 minutes at room temperature.

In contrast to $C_2H_5 AlCl_2$ alone, $Al \equiv$ gives an adduct with $W(CO)_5 L$ and this adduct has been identified by IR spectroscopy for $L = PPh_3$ [3], P-n-Bu₃ and $P(OPh)_3$. The aluminium atom is probably bound to the terminal oxygen of the carbonyl group *trans* to the ligand L. For such adducts, the $\nu(CO)$ vibration of the carbonyl group complexed to $Al \equiv$ appears at about 1667 cm⁻¹, whereas the $\nu(CO)$ vibrations corresponding to the *E* mode appear at 1993, 1998 and 2011 cm⁻¹ for L = P-n-Bu₃, PPh₃ [3] and P(OPh)₃, respectively. This acid—base complexation leads to considerable increase in the back-donation $(d_{\pi}-p_{\pi})$ of tungsten *d* electrons into π^* orbitals of the CO group complexed to $Al \equiv$ and a decrease of the $(d_{\pi}-p_{\pi})$ or $(d_{\pi}-d_{\pi})$ back-donation to the other carbonyl groups of the square plane (shift of 61 ± 2 cm⁻¹ of the *E* mode towards higher wave numbers), and to the ligand L. The adducts are in equilibrium with the starting complex and the Lewis acid, since they are observed for Al/W ratios higher than ca. 7 for $L = PPh_3$. Destruction of the adduct by butanol as soon as it is formed reforms the starting complex $W(CO)_5 L$.

The adducts are not very stable and decompose in a few minutes at room

temperature into W(CO)₆ (characterized by IR spectroscopy and chemical analysis for $L = P-n-Bu_3$, PPh₃ and P(OPh)₃) and carbon monoxide. W(CO)₅ is necessarily an intermediate in this decomposition which involves the loss of the ligand L, probably complexed to the Lewis acid $Al \leq in$ excess in the medium. When the concentration of $W(CO)_6$ is maximum and equal to about ½ of that of $W(CO)_5 L$, approximately two molecules of CO per starting complex are evolved. This suggests either the formation of a highly unsaturated zerovalent tungsten or a further reaction of a subcarbonyl complex with the organoaluminium compound.

In the case of L = CO the adduct could not be identified by IR spectroscopy. This is probably due to the low basicity of the carbonyl groups which leads to a low concentration of the adduct. However, decomposition of W(CO), into carbon monoxide and a tungsten subcarbonyl was observed, but with a much slower rate than with $L = PPh_3$, $P(OPh)_3$ or P-n-Bu₃.

Formation of W(CO), L has not been confirmed spectroscopically, but the destruction of the (phosphine $\rightarrow Al \leq$) complexation by butanol in the course of the decomposition of the adduct compound, with liberation of the phosphine PPh₃, produced W(CO)₄ (PPh₃)₂ (cis and trans), which was identified by chemical analysis, and IR spectroscopy.

With AICl₃ instead of $C_2H_5AICl_2 + O_2$, the adduct was not identified, probably because the low solubility of AlCl₃ leads to a low ratio Al/W. However, a fast decomposition of the starting complex $W(CO)_5 L$ into $W(CO)_6 + CO + un$ identified W compound was observed with $L = P(OPh)_3$ and PPh_3 .

Our results indicate that the role of the organoaluminium compound is that of a Lewis acid, at least for the initial step of activation of W(CO)₅ L. We have no experimental evidence so far to show at which stage of the decomposition the olefins become coordinated: (LW(CO)₄, W).

The mechanism we propose for formation of a zerovalent active tungsten species also explains results obtained with other precursor complexes. Starting from the zerovalent molybdenum complex $Mo(CO)_5 Cl^-NR_4^+$ associated with C_2H_5 AlCl₂, Doyle [7] isolated Mo(CO)₆ and concluded that the active molybdenum species is zerovalent molybdenum, the role of the alkylaluminium compound being only that of a Lewis acid. Bencze [9] found that CO had a promoting effect on olefin metathesis with the catalytic components WCl₆, $C_2H_5AlCl_2$. He also found [9] that WOCl₄ (or WCl₆) can be reduced to zerovalent tungsten by $C_2 H_5 AlCl_2$ in the presence of carbon monoxide with formation of W(CO)₆. Finally Lewandos and Pettit [5, 6] found that toluene-W(CO)₃ is active on its own in olefin metathesis by loss of the toluene ligand and of at least one CO group.

References

- 1 N. Calderon, H.Y. Chen and K.W. Scott, Tetrahedron Lett., (1967) 3327.
- 2 W.B. Hughes, Organometal. Chem. Syn., 1 (1972) 341.
- 3 J.M. Basset, R. Mutin, H. Praliaud, G. Coudurier and Y. Trambouze, J. Catalysis, 34 (1974) 196.
- 4 J.M. Basset, H. Prahaud, G. Coudurier, Y. Ben Taarit and R. Mutin, J. Organometal. Chem., 74 (1974) 167.
- 5 G.S. Lewandos and R. Pettit, Tetrahedron Lett., (1967) 789. 6 G.S. Lewandos and R. Pettit, Tetrahedron Lett., (1971) 780.
- 7 G. Doyle, J. Catalysis, 30 (1973) 118.
- 8 W.R. Kroll and G. Doyie, Chem. Commun., (1971) 839.
- 9 L. Bencze and L. Markó, J. Organometal. Chem., 28 (1971) 271.
- 10 L. Bencze, J. Organometal. Chem., 37 (1972) C37,